extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C4○D12) = C42.104D6 | φ: C4○D12/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.1(C4oD12) | 192,1099 |
C22.2(C4○D12) = C42.119D6 | φ: C4○D12/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.2(C4oD12) | 192,1124 |
C22.3(C4○D12) = C24.100D4 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.3(C4oD12) | 192,703 |
C22.4(C4○D12) = C24.54D4 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(C4oD12) | 192,704 |
C22.5(C4○D12) = C42.102D6 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.5(C4oD12) | 192,1097 |
C22.6(C4○D12) = C42⋊19D6 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C22 | 48 | | C2^2.6(C4oD12) | 192,1119 |
C22.7(C4○D12) = C42.118D6 | φ: C4○D12/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.7(C4oD12) | 192,1123 |
C22.8(C4○D12) = Q8.8D12 | φ: C4○D12/D12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.8(C4oD12) | 192,700 |
C22.9(C4○D12) = Q8.9D12 | φ: C4○D12/D12 → C2 ⊆ Aut C22 | 48 | 4+ | C2^2.9(C4oD12) | 192,701 |
C22.10(C4○D12) = Q8.10D12 | φ: C4○D12/D12 → C2 ⊆ Aut C22 | 96 | 4- | C2^2.10(C4oD12) | 192,702 |
C22.11(C4○D12) = C42.105D6 | φ: C4○D12/D12 → C2 ⊆ Aut C22 | 96 | | C2^2.11(C4oD12) | 192,1100 |
C22.12(C4○D12) = C42⋊18D6 | φ: C4○D12/D12 → C2 ⊆ Aut C22 | 48 | | C2^2.12(C4oD12) | 192,1115 |
C22.13(C4○D12) = D12.2D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8- | C2^2.13(C4oD12) | 192,307 |
C22.14(C4○D12) = D12.3D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8+ | C2^2.14(C4oD12) | 192,308 |
C22.15(C4○D12) = D12.6D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 48 | 8+ | C2^2.15(C4oD12) | 192,313 |
C22.16(C4○D12) = D12.7D4 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 96 | 8- | C2^2.16(C4oD12) | 192,314 |
C22.17(C4○D12) = C24.42D6 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 48 | | C2^2.17(C4oD12) | 192,1054 |
C22.18(C4○D12) = C42⋊12D6 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 48 | | C2^2.18(C4oD12) | 192,1086 |
C22.19(C4○D12) = C42.96D6 | φ: C4○D12/C3⋊D4 → C2 ⊆ Aut C22 | 96 | | C2^2.19(C4oD12) | 192,1090 |
C22.20(C4○D12) = D24⋊11C4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C22 | 48 | 2 | C2^2.20(C4oD12) | 192,259 |
C22.21(C4○D12) = D24⋊4C4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.21(C4oD12) | 192,276 |
C22.22(C4○D12) = C42.277D6 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.22(C4oD12) | 192,1038 |
C22.23(C4○D12) = C24.41D6 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C22 | 48 | | C2^2.23(C4oD12) | 192,1053 |
C22.24(C4○D12) = C6.62- 1+4 | φ: C4○D12/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.24(C4oD12) | 192,1074 |
C22.25(C4○D12) = (C2×C12)⋊Q8 | central extension (φ=1) | 192 | | C2^2.25(C4oD12) | 192,205 |
C22.26(C4○D12) = C6.(C4×Q8) | central extension (φ=1) | 192 | | C2^2.26(C4oD12) | 192,206 |
C22.27(C4○D12) = C3⋊(C42⋊8C4) | central extension (φ=1) | 192 | | C2^2.27(C4oD12) | 192,209 |
C22.28(C4○D12) = C3⋊(C42⋊5C4) | central extension (φ=1) | 192 | | C2^2.28(C4oD12) | 192,210 |
C22.29(C4○D12) = C6.(C4×D4) | central extension (φ=1) | 192 | | C2^2.29(C4oD12) | 192,211 |
C22.30(C4○D12) = C2.(C4×D12) | central extension (φ=1) | 192 | | C2^2.30(C4oD12) | 192,212 |
C22.31(C4○D12) = C2.(C4×Dic6) | central extension (φ=1) | 192 | | C2^2.31(C4oD12) | 192,213 |
C22.32(C4○D12) = Dic3⋊C4⋊C4 | central extension (φ=1) | 192 | | C2^2.32(C4oD12) | 192,214 |
C22.33(C4○D12) = C22.58(S3×D4) | central extension (φ=1) | 96 | | C2^2.33(C4oD12) | 192,223 |
C22.34(C4○D12) = (C2×C4)⋊9D12 | central extension (φ=1) | 96 | | C2^2.34(C4oD12) | 192,224 |
C22.35(C4○D12) = D6⋊(C4⋊C4) | central extension (φ=1) | 96 | | C2^2.35(C4oD12) | 192,226 |
C22.36(C4○D12) = D6⋊C4⋊C4 | central extension (φ=1) | 96 | | C2^2.36(C4oD12) | 192,227 |
C22.37(C4○D12) = D6⋊C4⋊5C4 | central extension (φ=1) | 96 | | C2^2.37(C4oD12) | 192,228 |
C22.38(C4○D12) = D6⋊C4⋊3C4 | central extension (φ=1) | 96 | | C2^2.38(C4oD12) | 192,229 |
C22.39(C4○D12) = C12⋊4(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.39(C4oD12) | 192,487 |
C22.40(C4○D12) = (C2×Dic6)⋊7C4 | central extension (φ=1) | 192 | | C2^2.40(C4oD12) | 192,488 |
C22.41(C4○D12) = C4×Dic3⋊C4 | central extension (φ=1) | 192 | | C2^2.41(C4oD12) | 192,490 |
C22.42(C4○D12) = C42⋊6Dic3 | central extension (φ=1) | 192 | | C2^2.42(C4oD12) | 192,491 |
C22.43(C4○D12) = (C2×C42).6S3 | central extension (φ=1) | 192 | | C2^2.43(C4oD12) | 192,492 |
C22.44(C4○D12) = C4×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^2.44(C4oD12) | 192,493 |
C22.45(C4○D12) = C42⋊11Dic3 | central extension (φ=1) | 192 | | C2^2.45(C4oD12) | 192,495 |
C22.46(C4○D12) = C42⋊7Dic3 | central extension (φ=1) | 192 | | C2^2.46(C4oD12) | 192,496 |
C22.47(C4○D12) = C4×D6⋊C4 | central extension (φ=1) | 96 | | C2^2.47(C4oD12) | 192,497 |
C22.48(C4○D12) = (C2×C4)⋊6D12 | central extension (φ=1) | 96 | | C2^2.48(C4oD12) | 192,498 |
C22.49(C4○D12) = (C2×C42)⋊3S3 | central extension (φ=1) | 96 | | C2^2.49(C4oD12) | 192,499 |
C22.50(C4○D12) = C24.14D6 | central extension (φ=1) | 96 | | C2^2.50(C4oD12) | 192,503 |
C22.51(C4○D12) = C24.15D6 | central extension (φ=1) | 96 | | C2^2.51(C4oD12) | 192,504 |
C22.52(C4○D12) = C24.19D6 | central extension (φ=1) | 96 | | C2^2.52(C4oD12) | 192,510 |
C22.53(C4○D12) = C24.23D6 | central extension (φ=1) | 96 | | C2^2.53(C4oD12) | 192,515 |
C22.54(C4○D12) = C24.24D6 | central extension (φ=1) | 96 | | C2^2.54(C4oD12) | 192,516 |
C22.55(C4○D12) = Dic3⋊(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.55(C4oD12) | 192,535 |
C22.56(C4○D12) = C6.67(C4×D4) | central extension (φ=1) | 192 | | C2^2.56(C4oD12) | 192,537 |
C22.57(C4○D12) = C4⋊C4⋊5Dic3 | central extension (φ=1) | 192 | | C2^2.57(C4oD12) | 192,539 |
C22.58(C4○D12) = D6⋊C4⋊6C4 | central extension (φ=1) | 96 | | C2^2.58(C4oD12) | 192,548 |
C22.59(C4○D12) = D6⋊C4⋊7C4 | central extension (φ=1) | 96 | | C2^2.59(C4oD12) | 192,549 |
C22.60(C4○D12) = C4×C6.D4 | central extension (φ=1) | 96 | | C2^2.60(C4oD12) | 192,768 |
C22.61(C4○D12) = C24.73D6 | central extension (φ=1) | 96 | | C2^2.61(C4oD12) | 192,769 |
C22.62(C4○D12) = C24.74D6 | central extension (φ=1) | 96 | | C2^2.62(C4oD12) | 192,770 |
C22.63(C4○D12) = C24.75D6 | central extension (φ=1) | 96 | | C2^2.63(C4oD12) | 192,771 |
C22.64(C4○D12) = C24.76D6 | central extension (φ=1) | 96 | | C2^2.64(C4oD12) | 192,772 |
C22.65(C4○D12) = C2×C4×Dic6 | central extension (φ=1) | 192 | | C2^2.65(C4oD12) | 192,1026 |
C22.66(C4○D12) = C2×C12.6Q8 | central extension (φ=1) | 192 | | C2^2.66(C4oD12) | 192,1028 |
C22.67(C4○D12) = C2×C42⋊2S3 | central extension (φ=1) | 96 | | C2^2.67(C4oD12) | 192,1031 |
C22.68(C4○D12) = C2×C4×D12 | central extension (φ=1) | 96 | | C2^2.68(C4oD12) | 192,1032 |
C22.69(C4○D12) = C2×C42⋊7S3 | central extension (φ=1) | 96 | | C2^2.69(C4oD12) | 192,1035 |
C22.70(C4○D12) = C2×C42⋊3S3 | central extension (φ=1) | 96 | | C2^2.70(C4oD12) | 192,1037 |
C22.71(C4○D12) = C2×C23.8D6 | central extension (φ=1) | 96 | | C2^2.71(C4oD12) | 192,1041 |
C22.72(C4○D12) = C2×C23.9D6 | central extension (φ=1) | 96 | | C2^2.72(C4oD12) | 192,1047 |
C22.73(C4○D12) = C2×Dic3⋊D4 | central extension (φ=1) | 96 | | C2^2.73(C4oD12) | 192,1048 |
C22.74(C4○D12) = C2×C23.11D6 | central extension (φ=1) | 96 | | C2^2.74(C4oD12) | 192,1050 |
C22.75(C4○D12) = C2×Dic3.Q8 | central extension (φ=1) | 192 | | C2^2.75(C4oD12) | 192,1057 |
C22.76(C4○D12) = C2×D6.D4 | central extension (φ=1) | 96 | | C2^2.76(C4oD12) | 192,1064 |
C22.77(C4○D12) = C2×D6⋊Q8 | central extension (φ=1) | 96 | | C2^2.77(C4oD12) | 192,1067 |
C22.78(C4○D12) = C2×C4⋊C4⋊S3 | central extension (φ=1) | 96 | | C2^2.78(C4oD12) | 192,1071 |
C22.79(C4○D12) = C2×C12.48D4 | central extension (φ=1) | 96 | | C2^2.79(C4oD12) | 192,1343 |
C22.80(C4○D12) = C2×C23.26D6 | central extension (φ=1) | 96 | | C2^2.80(C4oD12) | 192,1345 |
C22.81(C4○D12) = C2×C4×C3⋊D4 | central extension (φ=1) | 96 | | C2^2.81(C4oD12) | 192,1347 |
C22.82(C4○D12) = C2×C23.28D6 | central extension (φ=1) | 96 | | C2^2.82(C4oD12) | 192,1348 |
C22.83(C4○D12) = C2×C12⋊7D4 | central extension (φ=1) | 96 | | C2^2.83(C4oD12) | 192,1349 |
C22.84(C4○D12) = C6.(C4⋊Q8) | central stem extension (φ=1) | 192 | | C2^2.84(C4oD12) | 192,216 |
C22.85(C4○D12) = (C2×Dic3).9D4 | central stem extension (φ=1) | 192 | | C2^2.85(C4oD12) | 192,217 |
C22.86(C4○D12) = (C2×C4).17D12 | central stem extension (φ=1) | 192 | | C2^2.86(C4oD12) | 192,218 |
C22.87(C4○D12) = (C2×C4).Dic6 | central stem extension (φ=1) | 192 | | C2^2.87(C4oD12) | 192,219 |
C22.88(C4○D12) = (C22×C4).30D6 | central stem extension (φ=1) | 192 | | C2^2.88(C4oD12) | 192,221 |
C22.89(C4○D12) = C6.C22≀C2 | central stem extension (φ=1) | 96 | | C2^2.89(C4oD12) | 192,231 |
C22.90(C4○D12) = (C22×S3)⋊Q8 | central stem extension (φ=1) | 96 | | C2^2.90(C4oD12) | 192,232 |
C22.91(C4○D12) = (C2×C4).21D12 | central stem extension (φ=1) | 96 | | C2^2.91(C4oD12) | 192,233 |
C22.92(C4○D12) = C6.(C4⋊D4) | central stem extension (φ=1) | 96 | | C2^2.92(C4oD12) | 192,234 |
C22.93(C4○D12) = (C22×C4).37D6 | central stem extension (φ=1) | 96 | | C2^2.93(C4oD12) | 192,235 |
C22.94(C4○D12) = C23⋊2Dic6 | central stem extension (φ=1) | 96 | | C2^2.94(C4oD12) | 192,506 |
C22.95(C4○D12) = C24.17D6 | central stem extension (φ=1) | 96 | | C2^2.95(C4oD12) | 192,507 |
C22.96(C4○D12) = C24.18D6 | central stem extension (φ=1) | 96 | | C2^2.96(C4oD12) | 192,508 |
C22.97(C4○D12) = C24.20D6 | central stem extension (φ=1) | 96 | | C2^2.97(C4oD12) | 192,511 |
C22.98(C4○D12) = C24.21D6 | central stem extension (φ=1) | 96 | | C2^2.98(C4oD12) | 192,512 |
C22.99(C4○D12) = C24.25D6 | central stem extension (φ=1) | 96 | | C2^2.99(C4oD12) | 192,518 |
C22.100(C4○D12) = C23⋊3D12 | central stem extension (φ=1) | 96 | | C2^2.100(C4oD12) | 192,519 |
C22.101(C4○D12) = C24.27D6 | central stem extension (φ=1) | 96 | | C2^2.101(C4oD12) | 192,520 |
C22.102(C4○D12) = (C2×Dic3)⋊Q8 | central stem extension (φ=1) | 192 | | C2^2.102(C4oD12) | 192,538 |
C22.103(C4○D12) = (C2×C4).44D12 | central stem extension (φ=1) | 192 | | C2^2.103(C4oD12) | 192,540 |
C22.104(C4○D12) = (C2×C12).54D4 | central stem extension (φ=1) | 192 | | C2^2.104(C4oD12) | 192,541 |
C22.105(C4○D12) = (C2×Dic3).Q8 | central stem extension (φ=1) | 192 | | C2^2.105(C4oD12) | 192,542 |
C22.106(C4○D12) = (C2×C12).288D4 | central stem extension (φ=1) | 192 | | C2^2.106(C4oD12) | 192,544 |
C22.107(C4○D12) = (C2×C12).55D4 | central stem extension (φ=1) | 192 | | C2^2.107(C4oD12) | 192,545 |
C22.108(C4○D12) = (C2×C4)⋊3D12 | central stem extension (φ=1) | 96 | | C2^2.108(C4oD12) | 192,550 |
C22.109(C4○D12) = (C2×C12).289D4 | central stem extension (φ=1) | 96 | | C2^2.109(C4oD12) | 192,551 |
C22.110(C4○D12) = (C2×C12).290D4 | central stem extension (φ=1) | 96 | | C2^2.110(C4oD12) | 192,552 |
C22.111(C4○D12) = (C2×C12).56D4 | central stem extension (φ=1) | 96 | | C2^2.111(C4oD12) | 192,553 |